

The Trouble with Neutrinos

Dan Dwyer - Berkeley Lab

Sambamurti Memorial Lecture June 26, 2012

Today's Journey

The Trouble with Neutrinos: A story in 4 acts.

Act 1:

The troublesome origin of neutrinos

Act 2:

Neutrino experiments, great and not so great

Act 3:

Neutrino Oscillation and The Daya Bay Experiment

Act 4:

More trouble on the horizon...

Act 1: The troublesome origin of neutrinos

Who needs Neutrinos?

No, neutrinos don't do any of those things...

A little nuclear refresher...

Early models of the atom

An Energy Crisis

An Energy Crisis

Are we missing something?

1930: W. Pauli suggests we are missing a particle.

1933: E. Fermi calls it the 'neutrino'.

Neutron in the nucleus changes into a proton and emits an electron and an 'invisible' particle.

There goes the neighborhood

Introducing a new particle has consequences...

The Sun is intense!

The Sun shines in neutrinos as well as light.

>1 trillion neutrinos pass through you every second!

earthobservatory.nasa.gov

v_1 v_2 v_3

What a blast!

>99% of supernova energy is released in neutrinos!

Credit: X-ray:
NASA/CXC/PSU/
S.Park & D.Burrows.;
Optical:
NASA/STScI/CfA/
P.Challis

The Trouble With Neutrinos

Remains of the Party

Neutrino Rain

Cosmic radiation produces neutrinos in our atmosphere.

Earthshine

Natural radioactivity of the earth produces neutrinos

v_1 v_2 v_3

'Man-made' Neutrinos

A standard nuclear power reactor produces ~10²¹ neutrinos per second!

Credit: Mike Baird
The Trouble With Neutrinos

Outnumbered!

Is something cooking?

Glass Houses

We are 'transparent' to neutrinos.

To Stop a Neutrino...

Let's build a wall...

To Stop a Neutrino...

Let's build a wall...

20

To Stop a Neutrino...

Let's build a wall...

What about experiments?

No detection of neutrinos for ~20 years...

Act 2: Neutrino experiments, great and not so great

In the real world...

Neutrino experiments are not easy...

Just because you see the expected,

→ doesn't mean you're right.

Just because you see the unexpected,

→ doesn't mean you're wrong.

Playing the odds

The chance of a single neutrino interacting with a single particle \rightarrow very small!

Playing the odds

The chance of one of many neutrinos interacting with a single particle

→ still very small!

Playing the odds

The chance of one of many neutrinos interacting with one of many particles

→ still very small, but it might just work...

Numbers Big and Small

1953 - 1959:

Reines and Cowan detect neutrinos from nuclear

Electron's Big Brothers

Tau: τ

Electron: e

Muon: μ

~200 times heavier

~3500 times heavier!

Physicists call this 'Flavor'.

Pick your Flavor

1953 - 1959:

Reines and Cowan detect neutrinos from nuclear reactors.

1962:

 $\nu_{\rm e}$

Lederman, Schwartz, Steinberger detect muon neutrino.

The Standard Model

Neutrinos:

- Three flavors
- Massless

A kink appears...

× 10

J.J. Simpson reports distortion

Considered evidence of neutrino mass (17 keV)

To kink or not to kink...

1985-1992: Mixed results from experiments

Experiment reference number

12

63Ni, Hime and Jelley 71Ge, DiGregorio

"The kink is dead!"

1993:

Detailed new experiments plus cross-checks of old experiments
→ Consensus that kink was experiment artifact.

 v_1 v_2 v_3

Neutrino Mass?

2001:

Experiment reports positive 'peak' due to neutrino mass.

Neutrino Mass?

2001:

Jury is still out, but new experiments will soon check...

A Night at the Opera...

Sep. 2011: OPERA experiment reports neutrinos travel faster than light!

The New York Times

Mar. 2012:

Other experiments (ICARUS, Borexino, LVD) do not find faster-than-light v.

OPERA finds errors in experiment.

Another problem?!

1968: R. Davis measures solar neutrinos.

Step 1:

Fill a tank with 100,000 gallons of cleaning fluid (Clorine).

Step 2:

Put it ~1 mile underground.

Step 3:

Wait for solar neutrinos to convert a few Cl atoms to Ar.

Step 4:

Take Argon atoms out of tank and count them.

Only found 1/3 of expected neutrinos...

Act 3: Neutrino Oscillation and The Daya Bay Experiment

v_1 v_2 v_3

Back to the Sun...

2002: SNO experiment shows solar neutrinos are changing flavor.

Mixed-up Neutrinos

Mixed-up Neutrinos

Neutrino Oscillation

43

Neutrinos do Oscillate!

θ-what?

Amount of oscillation is described using three numbers:

$$\theta_{12} \sim 35^{\circ}$$

$$\theta_{12} \sim 35^{\circ}$$
 $\theta_{23} \sim 45^{\circ}$

$$\theta_{13} \sim ?$$

Nature chooses the values, we must measure by experiment.

Neutrino Hunting in China

Three Pairs of Nuclear Power Reactors → Lots of Neutrinos!

Nearby Mountains → **Good place to stick a detector!**

A Simple Plan...

Bigger Target = More Neutrinos

20 tons of 'liquid scintillator'

→ neutrino target

~200 electric 'eyes' look for small flashes of light.

v_1 v_2 v_3

Daya Bay Collaboration

~230 Collaborators

v_1 v_2 v_3

From the inside

On the road

 v_2 v_3

Underwater

Ready to go...

Detectors everywhere

How small is θ_{13} ?

How small is θ_{13} ?

v_1 v_2 v_3

Obvious!

Far detectors see clear neutrino 'disappearance'!

 $\sin^2 2\theta_{13} = 0.089 \pm 0.010 \text{ (stat)} \pm 0.005 \text{ (syst)}$

Act 4: More trouble on the horizon...

58

Neutrinos oscillate... so what?

Broken Laws...

Flavor is not conserved.

Number of electron, muon, tau particles can change...

... but sum is still conserved:

$$l_e + l_\mu + l_\tau = constant$$

Yes, they have mass...

Balance Sheet Trouble

Try to measure by shooting neutrinos across the US.

Big Bang Trouble

Parting Comments... Neutrinos are everywhere Careful experiments

